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orbits are close to the exact orbits, even after an unlimited number of timesteps. The equivalence 
between the discrete-time and continuous-time dynamics holds only for sufficiently small of the timestep 
d. For intermediate values of A (sufftciently large that the conservation law does not hold, but 
sufftciently small that the numerical orbits are not chaotic) a new “super-adiabatic” invariant ,4 is 
derived, and it is shown that conservation of A forces the numerical orbits to lie on smooth closed 
curves. If the potential energy varies rapidly over a small region, it is shown that very high-order 
resonances between the timestep and the orbital period T, (i.e., T/A = n, where n is a large integer) 
produce large deviations of these closed curves from the exact orbit. Such resonances also cause extreme 
sensitivity of the numerical orbit to the timestep. 

BOUNDARY ELEMENT SOLUTION OF HEAT CONVECTION-DIFFUSION PROBLEMS. B. Q. Li, Massachusetts 
Institute of Technology, Cambridge, Massachusetts, USA ; .I. W. Evans, University of California, 
Berkeley, California, USA. 

A boundary element method is described in detail for the solution of two-dimensional steady-state 
convective heat diffusion problems in homogeneous and isotropic media with both linear and nonlinear 
boundary conditions. Through an exponential variable transformation, the introduction of fundamental 
solutions and the use of Green’s theorem, the problem is reduced to one involving values of temperature 
and/or heat flux in the form of an integral only along the boundary. The integral is solved numerically 
for three examples. Two of them have linear boundary conditions and their numerical results are 
compared with the corresponding analytical solutions. The other has a nonlinear boundary condition 
due to heat radiation and an iterative procedure is applied to obtain the numerical solution. The 
fictitious source formulation leading to the boundary element solution of the same problems is discussed 
as an alternative. The extension of the method to formulate transient and/or three-dimensional convective 
heat diffusion problems is also described, and the relevant fundamental solutions are given. Finally, the 
exponential variable transformation is applied to construct a functional of variational principle which 
leads to developing a finite element formulation of the problems with a banded, symmetric stiffness 
matrix. 

CLOSED FORM SOLUTION FOR LOCALIZED MODES ON A POLYMER CHAIN WITH A DEFECT. V. K. Saxena, 
Universidade Federal de Santa Catarina, Florianopolis, SC, BRAZIL; L. L. Van Zandt and 
W. K. Schroll, Purdue University, West Lafayette, Indiana, USA. 

The problem of localized vibration modes on a polymer chain with a symmetry breaking defect is 
formulated as a finite sum of exponentially decaying waves on the polymer. Applying a set of similarity 
and unitary transformations, and using the singular value decomposition technique, the size of the 
problem is reduced to relatively small dimensions as compared to the large size of the original set of 
equations for propagating modes on the chain. A modification of the polynomial eigenvalue problem 
converts the algebraic system to a simple eigenvalue problem which may be diagonalized to give eigen- 
vectors of different decaying waves for an expansion set to describe general localized excitations. 
Application of proper boundary conditions at the site of broken symmetry leads to determination of the 
frequencies of the localized modes and corresponding eigenvector expansion. Possible applications of the 
algorithm to various defect problems on a polymer chain are discussed and some preliminary results on 
a particular defect are presented. 

RUNGE-KUTTA SM~~THEYR FOR SUPPRESSION OF COMPUTATIONAL-MODE INSTABILITY OF LEAP FR~C 
SCHEME. Akira Aoyagi, Kyushu Industrial University, Fukuoka, JAPAN; Kanji Abe, The University 
of Tokyo, Tokyo, JAPAN. 

The Runge-Kutta smoother is applied to suppress nonlinear numerical instabilities in the leap-frog 
scheme for time integration of the Kortewegde Vries equation. The accuracy of integration is compared 


